
IJIREEICE IJIREEICE ISSN (Online) 2321 – 2004
ISSN (Print) 2321 – 5526

International Journal of Innovative Research in
Electrical, Electronics, Instrumentation and Control Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 3, March 2017

Copyright to IJIREEICE DOI 10.17148/IJIREEICE.2017.5323 109

Review of Runtime Enforcement of Memory

Safety in C Programming

Abhishek Bhosale
1
, Sankalp Biyani

2
, Sushant Manjare

3
, Er. Chandan Prasad

4

BCA Scholar, CTIS, School of Information & Technology, Pune, India
1, 2,3

Assistant Professor, IT, Ajeenkya DY Patil University, Pune, India
 4

Abstract: The Unreliability of the C language has been in the forefront due to multiple memory access violations.

Various methods have been devised to detect memory errors at runtime but are unable to detect all of them. These

hurdles give rise to a various problems such as manual code modification, usage of metadata which is unsuited and

high runtime outlays. This type of overwhelming conditions give rise to various compiler analysis tools which ensures

the memory safety of C programs at runtime while avoiding any possible shortcomings and also help to lower the

runtime cost of attaining memory safety.

Keywords: Memory Management, Memory Safety, Memory Violations, Memory Optimization.

I. INTRODUCTION

The C programming language is used fairly often despite

its known memory malfunctions and the errors it

generates. The main reason behind its persistent

implementation is the features it provides such as low-

level access to system memory which is the cause of

multiple memory access violations, these indications go

unnoticed which results in data corruption, buffer

overflows and the much notorious dangling pointers.

Other Ideal languages such as java guarantee memory

safety with multiple syntax limitations and real time

inspections when security is concerned, another language

known as rust provides maximum memory safety by

providing functional and imperative-procedural

paradigms. This dissertation provides the overview of the

compilation process of the C programming language and

also the low level features it gradually provides along the

way, but this may be the prime cause of memory

violations and also a major concern regarding the security

of the C programming language.

II. LITERATURE SURVEY

C being one of the most popular languages of all time with

multiple compilers supporting various architectures, it

comes with its share of defects concerning with memory

access violations.

Initially developed as a general purpose programming

language, its main goal was to implement system software

which was also a purpose to be the most widely used

programming language in the distant future. It also

enabled UNIX to be implemented in a high level language

as assembly was system architecture specific. Due to C

having low level access to the systems memory it is able to

manipulate data specified in that memory.

A. Compilation

A Compiler is a program that transforms a program into a

machine executable format. It is responsible for various

tasks such as semantic analysis of source code and the

generation and optimization of the machine code. At first

the source code is pre-processed by the pre-processor then

the compiler generate an assembly equivalent of that code

then an object file is created and with the help of linker it

is linked to its executable format and the program is

executed in the form of process in the process address

space.

Fig 1. Flow of Compilation

IJIREEICE IJIREEICE ISSN (Online) 2321 – 2004
ISSN (Print) 2321 – 5526

International Journal of Innovative Research in
Electrical, Electronics, Instrumentation and Control Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 3, March 2017

Copyright to IJIREEICE DOI 10.17148/IJIREEICE.2017.5323 110

In a compiler the tasks are arranged into three groups:

 Front End

 Middle End

 Back End

The main task [1] of the front end of the compiler is to

develop an internal target-independent representation of

the program, called the intermediate representation (IR), to

be used by the middle-end. The lexical analysis of the

source code is done by the front end in order to recognize

the keywords, identifiers and symbols. The middle end is

responsible for the semantic analysis of the source code

and the backend transforms the IR into a machine

executable representation.

B. Memory Security Desecrations.

Pointers enable to indirectly access [1] the data stored in

system memory; they can also implement the call-back

mechanism which is a prerequisite for event handlers. A

function’s local storage may be reallocated for the

execution of another function, reading or writing the

address of a previously allocated variable results in a

temporal violation. For example a scenario in which the

pointer is trying to deallocate an object which has already

been deallocated. The dereferencing of dangling heap

pointers causes the memory [2] to be deallocated by the

free function instead of deallocating it automatically

during the function termination. Various attempts by the

program are made to deallocate the same object twice that

was originally not allocated by malloc () itself, causes a

temporal safety violation. Spatial memory errors involve

the use of an out of bounds pointer or array index.

These memory violations can be divided into two types (1)

Spatial Safety Violation and (2) Temporal Safety

Violation, the first condition occurs when you use a

pointer [1] to access a particular data at a memory location

which is outside the limits of an allocated object. The

second condition occurs when you use a pointer [1] to

deallocate an object that has already been deallocated,

which means the pointer is being used at an invalid

situation in the program. Various other situations include

stack exhaustion in which the program runs out stack

space mainly because of its deep recursive content. All of

these conditions are overlooked due to the fact of fast

execution as [3] execution of memory safe languages

requires time as they monitor each segment of code and

the syntax restrictions posed to them. Due to this Dilemma

security is the one which is always compromised as people

think having more speed is convenient.

III. CONCLUSION

In this paper we described that C can be made a memory

safe language by following a restricted usage of certain

functions and with simple optimizations of some compiler

analysis tools. The goal of this work was to ease the

memory safety problems of C with solutions that can be

used in the real world today. Several additional compile-

time optimizations are possible, aiming at immediate

usability and impact, it may be possible to apply these

techniques to other languages or even hardware-based

solutions.

REFERENCES

[1] Runtime Enforcement of Memory Safety for the C Programming

Language by Matthew Stephen Simpson and Professor Rajeev
Barua.

[2] Lecture Notes on Language-Based Security Erik Poll Radboud

University Nijmegen January 21, 2016.
[3] Practical memory safety for C University of Cambridge Computer

Laboratory Periklis Akritidis June 2011.

